2017年5月3日,董云偉教授課題組與美國東北大學、斯坦福大學和香港大學研究者合作在Proceedings of the Royal Society B: Biological Sciences期刊發表題為"Untangling the roles of microclimate, behavior and physiological polymorphism in governing vulnerability of intertidal snails to heat stress"的研究論文,闡述了小尺度的環境和生理過程的多樣性對于氣候變化研究的意義。
生物對于全球氣候變化下極端氣候條件的響應是當今的研究熱點之一。然而針對這個問題,現多采用全球尺度或生物地理尺度模型進行研究,而忽略了小尺度生理和生態過程的生態學意義。本研究針對“小尺度的生態和生理過程是否會影響氣候變化預測的準確性”在潮間帶腹足類進行了較為系統的研究。研究發現,小尺度的生態和生理過程的多樣性可以影響模型預測的準確性,提出在未來氣候變化研究中需要重視小尺度生態過程的重要性。
本研究選取中國沿岸緯度跨度達11.5° 的8個地點,以3種常見腹足類(中華濱螺Littoraria sinensis,短濱螺Littorina brevicula,齒紋蜒螺Nerita yoldii)為研究對象,整合生理學和生物物理學模型,以心率作為熱耐受指標,繪制心臟性能曲線,計算致死性溫度耐受上限(Flat Line Temperature, FLT)和亞致死性溫度耐受上限(Arrhenius Breakpoint Temperature, ABT),分析生物熱耐受能力及其在不同地理尺度上的差異。同時通過熱量平衡模型(Heat Budget Model),計算不同微環境下3種螺類體溫,計算熱應激安全范圍(Thermal Safety Margin, TSM),分析生物受熱脅迫的情況。對體溫進行自相關分析,推測生物對于高溫事件的預測及躲避能力。綜合分析,探究微環境與生理多態性在潮間帶腹足類抵御熱脅迫中的作用,并對中國沿岸潮間帶腹足類熱脅迫情況進行研究。

齒紋蜒螺
潮間帶生態系統具有復雜的微生境,綜合考慮小尺度的生態和生理過程的異質性在評估全球氣候變化的生態效應的研究中具有重要意義。本研究表明,小尺度溫度環境和生理適應能力的差異性對于種群適合度具有重要影響。陰面微環境為生物提供了良好的避難所以躲避高溫。然而在溫度脅迫最為嚴重的地區,生物對于高溫事件的預測能力較低,影響行為調節的效果。生物的生理耐受性具有高度的差異性,部分個體具有極高的耐受溫度上限,能夠在極端高溫時間中存活,保證整個種群的存活率。綜合環境溫度和生理適應能力結果,對中國沿岸潮間帶生物對氣溫升高的敏感性進行了預測。結果表明,在全球氣候變化的大背景下,氣溫持續升高,揚子大三角洲沿岸將會是我國溫帶及亞熱帶沿海地區最易受擾動的區域。
Figure 1. Relationship between cardiac performance (ABT, FLT) and TSM. (a) Heart rate increases with temperature until the Arrhenius Breakpoint Temperature (ABT) is reached and then decreases rapidly to zero (black circles and the red curve following left y-axis). ABT was calculated by linear regression (blue lines) using data on Arrhenius plots (gray circles following the right y-axis) that lay either above or below the temperature at which the highest heart rate occurred. The temperature at which these two lines intersected was taken as the ABT. FLT is the temperature where heart beat ceases. TSM is defined as the difference between an organism’s critical thermal maximum (ABT (nonlethal) or FLT (lethal)) and the highest body temperature that an organism is likely to experience in nature (TSMABT = ABT – Tbmax, TSMFLT = FLT - Tbmax). Due to the physiological polymorphism and microhabitat heterogeneity, TSM varies among (b) individuals and (c) microhabitats.

Figure 2. High inter-individual, inter-population and interspecific variability in cardiac performance curves. (a) Variation within a population: dashed lines depict individual heart rates and the solid line depicts the curve for all individuals of L. sinensis from the Xiamen population (n = 10). (b) Variation among populations: dashed lines depict heart rate curves generated for each population and the solid line depicts the curve for all individuals of L. sinensis from all populations (n = 70). (c) Interspecific comparisons: the solid, dashed and dotted lines depict the heart rate curves of L. sinensis, L. brevicula and N. yoldii, respectively.

Figure 3. Phase diagrams of heat-tolerance limits and maximum operative temperatures in sun-exposed (a, c) and shaded habitats (b, d). The white region shows where species have a physiological thermal-safety margin for ABT and FLT; the shaded region shows where species are threatened by temperatures above either ABT (c, d) or FLT (a, b) thermal stress.

Figure 4. Thermal safety margin (TSM) of three gastropods with latitude. Solid lines show linear regressions for TSM with latitude and dotted lines show 95% confidence intervals. TSM was calculated for the FLT (a, b) and the ABT (c, d) in sun-exposed (a, c) and shaded habitats (b, d).
該研究結果于2017年5月發表于Proceedings of the Royal Society B: Biological Sciences(英國皇家學會會刊B輯,近五年影響因子5.366)。
Citation: Dong Y-wei, Li X-xu, Choi FMP, Williams GA, Somero GN, Helmuth B. 2017 Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. R. Soc. B 284: 20162367. http://dx.doi.org/10.1098/rspb.2016.2367
全文鏈接:http://rspb.royalsocietypublishing.org/content/284/1854/20162367