海洋顆粒物及其它固體表面附著微生物往往與海水中自由生活的微生物有著不同的種類組成和功能過程,它們在海洋營養鹽再生、碳氮磷硫鐵等生源要素循環、環境污染物降解、食物網物質、能量和遺傳信息流動中發揮著重要作用。附著微生物不但通過呼吸作用影響海洋顆粒有機物(POM)的降解,從而影響海洋POM的再礦化深度、海洋生物泵儲碳作用、海洋對大氣CO2濃度及全球氣候變化的調節作用,而且,附著微生物在降解POM的同時,加速營養鹽再生,從而促進海洋真光層的光合固碳作用及弱光和無光層的微生物化能自養固碳作用(圖1),對全球氣候變化和海洋環境變化發揮重要作用。
黨宏月教授早年在美國學習期間,在國際上率先建立了海水附著微生物群落早期演替等分子生態學研究方法,通過定性和定量研究,在國際上首次發現海洋玫瑰桿菌(Roseobacter clade)等為大西洋海水附著微生物群落的先鋒定殖種,之后在中國自然科學基金項目資助下,在太平洋沿岸的研究進一步證實了這類海洋細菌對附著微生物群落的重要貢獻,系統揭示了這一全球性的海洋微生物生態現象和規律。同時,團隊在國際上首次發現了海洋Zeta變形菌綱化能自養鐵氧化細菌是一類早期觸發腐蝕、引起碳鋼在海水中加速低水位腐蝕的微生物。這些發現不但為揭示海洋附著微生物的生態環境作用等科學研究奠定了基礎,而且為開展海水微生物金屬腐蝕作用及其防護控制技術研究提供了新思路。
在這些研究發現和成果基礎上,黨宏月教授與美國南卡羅萊納大學Charles R. Lovell教授合作,對海洋微生物的固體表面附著及生物膜形成、發育等生態過程和生物地球化學功能進行了系統的理論分析和文獻綜述,所撰寫的論文“Microbial Surface Colonization and Biofilm Development in Marine Environments(海洋環境微生物固體表面定殖與生物膜發育研究)”最近在國際微生物學著名專業學術期刊Microbiology and Molecular Biology Reviews(Top Journal, SCI影響因子14.611)在線發表。
該綜述文章在系統整合和分析該領域近年來所取得的研究進展和成果基礎上,深入解析了浸海固體表面和海洋顆粒物附著微生物的遺傳、生化、生理、生態、生物地球化學及組學等特征和規律,對比論述了附著微生物對海洋生態系統功能的影響及對海洋工程等的危害作用(如微生物金屬腐蝕作用等),分析了海洋附著微生物對全球變化(如海水升溫、海洋酸化、海水缺氧等)的響應和影響,并系統地對該領域的未來發展方向、科學研究重點及創新研究突破口進行了前瞻性分析,為海洋微生物附著、生物膜發育及相關的全球變化等研究提供系統的理論基礎和科學指導。
這一研究成果是經過多年不懈努力取得的,黨宏月教授所發表的研究論文,在國際同行間有較好的學術影響,文章引用率較高,并被Elsevier收錄入2014年中國“免疫和微生物學”領域高被引學者榜單。
Prof.Hongyue Dang and Prof. Charles R. Lovell have just published a review paper on Microbiology and Molecular Biology Reviews.
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (1) surface, population, and community sensing and signaling, (2) intraspecies and interspecies communication and interaction, and (3) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle.
In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community- level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
The key points presented in this review include:
1) Marine particle- and surface-associated microorganisms usually possess unique species composition, ecological processes and biogeochemical functions, which are generally different from their free-living counterparts. Particle- and surface-associated microbiota play important roles in nutrient regeneration, bioactive element (such as C, N, P, S and Fe) cycling, environmental pollutant biodegradation, and the flows of matter, energy and genetic information in marine food webs.
2) The formation and development of surface-associated marine microbial communities generally follow successional patterns, in which marine Roseobacter clade bacteria are usually the early-stage pioneer colonizers, particularly in coastal waters. Complex interactions such as cooperation and competition are prevalent among surface-associated microorganisms, laying the foundation for the establishment of compositional diversity and functional processes of the marine surface-associated microbiota.
3) Surface-associated microbiota influence, via microbial respiration, the biodegradation of marine particulate organic matter (POM), and thus the remineralization depth of sinking POM, the carbon sequestration efficiency of the biological pump, and the ocean's modulation capacity of atmospheric CO2 concentration and climate change. Furthermore, surface-associated microbiota prompt the regeneration of nutrients through POM biodegradation, thus enhance photosynthetic CO2 fixation in the euphotic zone and chemolithoautotrophic CO2 fixation in the twilight and aphotic zones (Fig. 1). Therefore, surface-associated microorganisms play important roles in the modulation of global climate change and the ocean's environmental change.
Link to full text:http://mmbr.asm.org/content/80/1/91.full.
Citation: Dang HY & Lovell CR. 2016. Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews. 80(1): 91-138. Doi: 10.1128/MMBR.00037-15.